Mapping Objects to Relational
Databases using Hibernate

German Eichberger

About me

German Eichberger, M.S,, isasen
engineer with UCSD’sfMRI Center,
former program manager with UCSD
an adjunct professor with Mesa College,
founder and CEO of e-nnovate Technologi
Prior to that he worked as a project manager
technical architect for PricewaterhouseCoop
designing and implementing e-commerce,
document management and CRM solutions. He
earned his degree in computer vision research
and vehicle tracking from the University of
Karlsruhe.

Agenda

e Introduction
e Basic Mapping Concepts
e HibernateLab 1

e Mapping Inheritance Structures
e Hibernate Lab 2
[]

[]

[J

([J

[J

L unch Break

Mapping Object Relationships
Hibernate Lab 3

Performance Tuning
Conclusion

Introduction

e What is persistence?

e The paradigm mismatch
e Persistence Layers and alternatives
e What isORM?

e The Role of the Agile DBA

What is persistence?

From Wikipedia, the free encyclopedia:

Persistence is the term used in computer science to describe a cap sedby a
computer programmer to store data structures in non-volatile sto
system or arelational database.

Without this capability data structures only exist in-memory, and will be | o
program exits. Persistence alows, for example, a program to be restarted
with the data structures from a previous invocation of the program.

Design patterns solving this problem are container based persistence, component
persistence and the Data A ccess Object model.

Examples of persistence are using Java serialization to store Java objects on disk or usi
J2EE to store Enterprise Java Beansin arelationa database.

Relational Databases

e present aview of dataasa
collection of rows and
columns

Codd’'s 12 Rules
Used almost everywhere

Common denominator in
most corporations

e SQL
Entity Relationship Diagram

E-R Diagram

-
llllllllll

THEATER

Lo o T

SOL

e CreateandAl ter
e Sel ect, Insert, Delete
e Joins and Cartesian Product

e Group, order

e A sound knowledge of SQL is mandatory for
sound Java database application

SQL in Java, C/C++, ...

e Usually language in language
e Special “connectors’ to the datab
JDBC, ADO.NET, ODBC, ...

e RDMS dominate the computing indu

e SQL isthelanguage of choice

Persistence in OOP

e Difference between persistent transient

objects

e Businesslogic doesn't interact with
and columnsin DB

e Business|ogic interacts within object-
oriented domain model

e Thereforeit is possible to use sophisticat
object-oriented objects

The paradigm mismatch (1)

e Granularity
— OOP: coarse-grained and finer-grained c!
datatypes (e.g. String)
— RDMBS: Tables and columns
e Inheritance and Polymorphism
e |dentity
— OOP: a==b a.equals(b)
— RDBMS: primary keys are the same

simple

The paradigm mismatch (2)

e Associations
— OOP: Object references, one-to-many, many-to-
— RDMBS: jains, link table, ...

e Object graph navigation
— OOP: a.getB().getBVaue()

— RDBMS: select Bvalue from ab whereab id =h.id and a.
123

e Thecost
— 30% of application code written deals with the mismatch

Layered Architecture

—>

—>

v
v
Persistence Layer -

v

B

Implement a Persistence Layer

e Hand-Code with SQL/JDBC or sirm
— Different SQL Dialects
— Lots of work
— Hard to test
— “Not invented here”
e Seriadization
— Can only access al objects as once
— Not very good for concurrent enterprise applications

Implement a Persistence Layer

e EJB 2.0 entity beans
— Bean Managed Persistence

Container managed persitence
Unpopular -- so being abandoned and replaced by JD
Why EJB’s are bad

e Too coarse grained - 1:1 relationship with tables

e Too fine grained for reusability
No polymorphic associations and queries
Not portable between different application servers
Not serializable
Forces an unatural Java Style

Implement a Persistence Layer

e Object Oriented Database System
— Not very popular
— But with JDO there might be a come-back
— According to vendors much faster than an R
— And who is still dealing with ISAM?

e Others
— XML persistence

What is ORM?

“ The automated and transparen sistence
of objectsto the tablesin arelati
database, using metadata that desc
the mapping between the objects and

database’

Parts of an ORM solution

e An API for performing basic ations
e An API or language for queries
e A way to specify the mapping met
e Sometrickslike

— Dirty checking

— Lazy association fetching

— Automatic optimization

Ways to implement 1

e Pure relational
— The application is designed around
— Heavy use of “stored procedure”

e Light object mapping
— Classes are mapped manually to tables
— Design Patterns hide SQL from Objects

Ways to implement 2

e Medium Object Mapping

— The Objects are the center

— SQL isgenerated at build time

— Objects are cached by the persistence layer
e Full object mapping

— Sophisticated object modeling

— Transparent persistency

— Efficient fetching and caching strategies

Why ORM

e Productivity

e Maintainability

e Performance

e Vendor Independence

Hibernate is an Open Source

ORM Technology

e Compatible with EJB 3.0
e Transparent Persistence
e Flexible Mapping

e Query Facilities

e Metadata Facilities

e Hibernate Multi-Layer Cache Architectu
e Performance

e Extension Points

Architecture

Application

Persistent Objects

Hibernate

hibernate .
Properties

XML Mapping

Database

Architecture - Lite

Application

"

Transient Objects |

SessionFactory

Persistent
Objects

Session

Database

Architecture — Full Cream

SppElicmt=on

Fuorsimbers I

e I
Sossiodan Trama-aotkon

Basic Mapping Concepts

Basic Mapping Concepts

e Introduction

e Mapping Terminology
e Shadow Information
e Mapping Meta data

Introduction

e Start with the data attributes o |ass

e An attribute will map to zero or
columnsin the database

e Not all attributes are persistent
e Some attributes are objects themselves
— Redlly reflects an association
— The object needs to be mapped as well

Introduction 2

e Mapping isrecursive and will en

e Easiest mapping is aone attribute to
column

e Usually classes don’t map to single tables
— But it’'sagood start
— Performance tuning might motivate Refactoring

e |n new projects the object schema should drive
the data model

Mapping Terminology

Mapping (v): The act of determinin
and their relationships are persisted i
data storage

Mapping (n): The definition of how an obj
property or arelationship is persisted in
permanent storage

Property: A data attribute, either implemented
physical attribute such as the string firstname or
asavirtual attribute implemented viaan
operation such as getTotal ()

Mapping Terminology

Property mapping: A mapping that
to persist an object property.

Relationship mapping: A mapping that
how to persist arelationship (association,
aggregation, or composition) between two o
more objects.

Shadow information

e Any data an object needs to magtain
above and beyond its normal do ata
to persist itself

— Primary key
— Concurrency control
— Boolean isPersistent()

e Common Style Convention in UML isto
not show shadow information

Mapping Meta Data

e Mapping Table
e Use apicture like on the whitebo
e Writeit in Hibernate’'s XML langu
e Use EJB 3.0 Annotations

Hibernate Lab 1

Hibernate Lab 1

e Hello World
e Understanding the architecture
e Mapping abasic POJO

Mapping Inheritance
Structures

Mapping Inheritance Structure

e Introduction
e Map Hierarchy to asingle table
e Map each concrete classto itsown t
e Map each classto itsown table

e Map classesto a generic table structure
e Mapping multiple inheritance

Introduction

e RDMS do not natively supportegheritance

e |nheritance results in some inter
twists when saving objects

For simplicity the following examples are
not tuned.

A simple hierarchy

Pt Farzoe
aane nama

L v Eraphran: CuainmE Errjlogss

LT salary mrimumc salary

Note: Thisis not the best modeling -- if somebody is a custo
an employer things get confusing.

Map Hierarchy to a single table
~N

Parsan | ' Farsen
ParsonP D <<Pls>> ParsenP D <<PHxx
:l-r!-ﬁl'lept I_| ::::nTW-

ame
Freferances l"j ;:Jifir-nm
Sala ary
: i Bonus

Onetable holds al attributes from multiple hierarchi
With more hierarchies things get messy
Imagine: Executives who are customers....

Refactor

Hibernate Mapping

<class hame="Person" table="Person">
<id name="PersonPOID" type="long" column="Person
<generator class="native"/>
<lid>
<discriminator column="PERSON_TY PE" type="string"/>
<property name="Name" column="Name"/>
<subclass name="Customer" discriminator-value="CUSTOMER">
<property name="Preferences’ column="Preferences'/>
</subclass>
<subclass name="Employee" discriminator-value="EMPLOY EE">
<property name="Salary" column="Salary"/>
<subclass name="Executive" discriminator-value="EXECUTIVE">
<property name="Bonus"' column="Bonus'/>
</subclass>
</subclass>
</class>

Hibernate Mapping

@Entity(Q

@Inheritance(
strategy=InheritanceType.SINGLE_TABLE,
discriminatorType=DiscriminatorType.STR
discriminatorValue=*Person"

)
@biscriminatorColumn(name="" PERSON_TYPE ')
public class Person { ... }

@Entity(Q
@Inheritance(
discriminatorValue=*“CUSTOMER""

public class Customer extends Person { ... }

Each concrete class to own
table

C uomewmian Emigkrmea

Cursfversee G0 PR - Errplaprci™Gil - PR~ —
Harm Huarm =1
Frolgrascis BTy

e Onetablefor each classincluding the
— Attributes implemented by the class
— Attributes inherited

Hibernate — Mapping 1

<class name=" Customer" table="Cu

<id name=" CustomerPOID" type="lo
column="CustomerPOID">

<generator class="native'/>
</id>
<property name="Name" column="“Name"/>

<property name="Preference"
column="Preference"/>

</class>

Hibernate — Mapping 2

<class name="Person">
<id name="POID" type="long" column="POID">
<generator class="native'/>
<lid>
<property name="*Name" column="Name"/>
<union-subclass name=" Customer" table=" Customer">
<property name="Preference" column="Preference"/>
</union-subclass>
<union-subclass hame="Employee" table=" Employee">

<union-subclass name="Executive" table="Executive'>

</union-subclass>
</union-subclass>
</class>

Hibernate — Mapping

@Entity
@Inheritance(strategy = InheritanceType. TABLE_PER_CL
public class Person implements Serializable {

Each Class to own table

Vo T Fmdes
Parner PO <P d\‘_ L 0 e FRELY -]
L] Hara
L= LR | L) | s
Coamrosyes Ll o L []
PR F I MR TR RA R B B) TR S F RN P N0 44 EFA 40 fRs Pl E I AR A SR RR R
el Wy e el T

.........................
FararFo o e P
Farra

e Customer and Employer in two tables-> join
e Note: Lotsof keysand relations

e Views

e Type column in person

Hibernate Mapping

<class name="Person" table="Person">
<id name="PersonPOID" type="long" column="Per
<generator class="native"/>
<fid>
<property name="Name" column="Name"/>
<joined-subclass name=" Customer" table=" Customer">
<key column="PersonPOID"/>
<property name="Preference" column="PREFERENCE"/>
</joined-subclass>
<joined-subclass name="Employee" table="Employee">
<key column="PersonPOID"/>

<joined-subclass name="Executive" table="Executive"'>
<key column="PersonPOID"/>

</joined-subclass>
</joined-subclass>
</class>

Hibernate Mapping

@Entity()
@I nheritance(strategy=I nheritanceType.JOINED)
public class Person implements Serializable{ ...}

@Entity()
public class Customer extends Person{ ... }

@Entity(access=AccessType.FIELD)
public class Employee extends Person{ ...}

Generic Table Structure

] 0. Inha farea
[BTG e ClaeerOiD « <P R
AririmmaR i oo s Fra il il
‘WabiE WWRCHLA 12 SoprClausih0 s s s sl
! P £ 3 £
'
thremilsrs &
oL
4
Afirarn
1 e T
Ane e ol ca
e =i i T skl
Aleibndu s < Tk 4| Bl v BN <P
ClanalPOdD & <TH= [aruciirian

e Very flexible approach
e Used when end users can add their own attribut
e Slow

Multiple inheritance

e Definition: A classinheritsfr
more superclasses

e A questionable feature of OO whic
make sense

— Not supported by Java
[Ty TR | R Pl Bl Pk
I [ET
I (e e L TR B
]
| Fan Cipaimy
Lo e
| s]
B e L e
I il b
Fird Liewdd I Lol rev——
prs | AP el R
g Lpan mrake"nhaw I Wil i gl :-i_ﬂrr_-ﬂ-a-
l I —— HurbeyH e
e | [t e o
- I Seeelclors
e [
i Lirard
I Gl ua oD = P [e e T
I Mamrrrripeed ;.l'rlrltl“m
| i ¥
| |
[Ep——y |
I Corpplw 0D =W rr =oFE
]
| Fas Capadiny
|

Conclusion

e None of these strategies are ideal | solutions
e The easiest strategy
— Onetable per hierarchy
— Then refactor
e Onetable per concrete classis messy if you
to refactor
— data migration nightmare

e Generic Schemais slow

Hibernate Lab 2

Hibernate Lab 2

e Hibernate generates schema
e Mapping class inheritance
— Table per concrete class
— Table per class hierarchy
— Table per subclass
e Simple Query

Mapping Object Relationships

Mapping Object Relationships

e Types of Relationships
e How Object Relationships are impl

e How Relational Database Relationships
implemented

e Relationship Mapping

e Mapping Ordered Collections

e Mapping Recursive Relationships
e Mapping Class Scope Properties

Tk
- el BB ST
ET G SR
fankFHE - Fumrionog
o ¥ el TankF s st
- i ST 1 O et Tara b i
BB W PR SR g = |+ peiEmpleyee |- HahSel
- mrtErnpleyneeSah Sei)
F GE PRI N T E T seh
Sl L er
'l [
[::m.
O | - EhiTeE S
[b i b - Ty STA
:ﬂ:-l:li— - - armplayma Bkl
Yizgi 20 e PO ==
gt i O < et * et TitanPri
o geriliwsenna]: Dwinizn o e Dl wiz P O il |
& genliaennd Deataien « geibmzlsre e SaxsSel
o geibmpirpenf il sl - S ETi iy e e e
¥ mirtempirpe efHS=l | + wilEtmgleyeet mgleye
+ rinefoei): Pesdizn * 1
i prF o fesPediang
ot T o] - Bt S
] W e A
iV adl Tkl
mree Tank] Dasl}

Types of Relationships

e First category based on multi
— One-to-one relationship
— One-to-many
— Many-to-many relationship
e Directionality
— Uni-directional

¢ Not supported by RDBMS, hence al relationship:
are bi-directional

— Bi-directional

ity

How Object Relationships are
Implemented

e Combination of reference an ations
— Multiplicity one: Reference and get
— Multiplicity is many: collection Attrib
e Array, List, HashMap, etc.
— Uni-directional only implemented in one c
— Bi-directional implemented in two classes

How Relational Database
Relationships are Implemented
e Relationships are maintained

use of foreign keys

e One-to-one and One-to-many just h
foreign key as column in the other tab

e Many-to-Many
— Either multiple foreign key columns
— Special Many-to-Many table

Tips on keys

e Use single column keys
e L et the database generate the key

— Hibernate has its own generators but
use the ones provided by the DB

Relationship Mappings

e Keep the multiplicities the
— Y ou could map a one-to-one relatio
many-to-many. Why?
e \When reading one object Hibernate c
automatically read all the other objects
defined in the relation into memory

One-To-One Mappings

e Let'swork through the logic of retri
Position object one step at atime:

1. The Position object isread into memory.

2. Theholds relationship is automatically traversed.

3. Thevalue held by the Position.EmployeePOID colum
to identify the single employee that needs to be read int
memory.

4. The Employeetableis searched for arecord with that valu
EmployeePOID.

5. The Employee object (if any) isread in and instantiated.

6. Thevalue of the Employee.position attribute is set to reference
the Position object.

One-To-One Mappings 2

e Now let’swork through the logi
single Employee object one step at
1. The Employee object isread into memorys
2. Theholdsrelationship is automatically trav
3. Thevaue held by the Employee.EmployeePO

column is used to identify the single position th
needs to be read into memory.

4. The Position tableis searched for arow with that
value of EmployeePOID.

The Position object isread in and instantiated.

6. Thevalue of the Employee.position attribute is set to
reference the Position object.

retrieving a
e

o

1

One-To-One Mappings 3

e Let'sassume we save an obj

— Create a Transaction to maintain
integrity

— Add update statements for each object

— Each update statement contains both bu
attributes and key values mapped

— Because of the foreign keys being inserted
the relationship is persisted

ential

One-To-One Mapping 4

e Look at Employer-Position
— Foreign key isimplemented in pos
— But in the object schemait isin emplo

— It works both ways

e But afuture requirement might be that an
employer can have multiple positions

— Requires the judgment call from a good
Mapping Specialist...

Hibernate Mapping

The foreign key with a unique constraint,
Position, may be expressed as:

Employeeto

<many-to-one name="Position" class=*Position"
column="PositionPOID" unique="true"/>

And this association may be made bidirectional by addi
the following to the Employee mapping:

<one-to-one name="employee" class="Employee" property
ref="position"/>

Hibernate Mapping

@Entity
public class Employee {

@ld
public Long getld() { returnid; }

@OneT o0ne(cascade = CascadeType ALL)
@PrimaryKeyJoinColumn
public Position getPosition() {

return position;

}

One-to-Many Mappings

e L ook at Employee and Divisi
— Automatically traversed from empl
division
— And in Hibernate vice versa

— Also cascading updates and del etes
e Performance?

One-to-Many Mappings 2

e Employee read into memory t
relationship

e But you don’t want to have several
of the same division

e Hibernate needs to keep track of that
— Caching

e Adding an employeeto adivisionisjust
di vsi si on. addEnpl oyee(enpl oyee)

One-to-Many Mappings 3

e Saving worksthe sameway asin

e Note: Every example uses ageneric key
foreign key but you could also use an attri
which is unique, e.g. the social security num

— | prefer generic keys though

Hibernate Mapping

<many-to-one name="employee" clB®g"Division"
column="Division POID"/>

Reverse
<bag
name="employees’
<key column="Division_POID"/>
<one-to-many class="“Employee’ />
</bag>

Hibernate Mapping

@Entity()
public class Employee implements Seri

@ManyToOne(cascade =
{ CascadeType.CREATE,
CascadeType.MERGE})

@JoinColumn(name="DivisionPOID")
public getDivision() {
return division;

}

le{

Many-to-Many Mappings

e Associative Table, adata entl
sole purpose isto maintain the r
between two or more tablesin the

e Look at Employee and Task
— Additional Table
— Usually contains the keys

e Notice that the multiplicity still works out

Many-to-Many Mappings 2

e Assumewe need toretrieve all t
employee object in memory

1. Create aSQL Select statement that joins the Emp
Task tables together, choosing all EmployeeTask r
the an EmployeePOID value the same as the employ
putting the task list together.

2. The Select statement is run against the database.

3. The datarecords representing these tasks are marshaled int
Task objects. Part of this effort includes checking to seeif t
Task object isalready in memory. If it isthen we may choo
to refresh the object with the new data values (thisisa
concurrency issue).

4. The Employee.addTask() operation isinvoked for each Task
object to build the collection up.

and

Many-to-Many Mappings 3

e Assume we need to save the relation

1. Start atransaction.

2. Add Update statements for any task objects that have

3. Add Insert statements for the Task table for any new t
have created.

4. Add Insert statements for the EmployeeTask table for then

5. Add Delete statements for the Task table any tasks that have b
deleted. This may not be necessary if theindividual object deleti
have already occurred.

6. Add Delete statements for the EmployeeTask table for any tasks th
have been deleted, a step that may not be needed if the individual
deletions have already occurred.

7. Add Delete statements for the EmployeeTask table for any tasks that
are no longer assigned to the employee.

8. Run the transaction.

Many-to-Many Mappings 4

e Many-To-Many Realtionships magtwo
business classes to three tables

Hibernate Mapping

<bag
name="tasks’
table="EMPLOYEE_TASKS’ >
<key column="Employee POID"/>
<many-to-many

class="Task”
column="Task_POID”
/>
</bag>

Hibernate Mapping

@Entity
public class Employer implements Serializable {
@ManyToMany(
targetEntity=org.hibernate.test. metadata.manytomany.Empl
cascade={ CascadeType.CREATE, CascadeType. MERGE}

)

@JoinTable(
table=@Table(name="EMPLOYER_TASKS"),
joinColumns={ @JoinColumn(name="Employee POID")},
inverseJoinColumns={ @JoinColumn(name="Task_POID")}

)
public Collection getTasks() {
return tasks;

}

Mapping Ordered Collections
~N

Order
Order Rern

Orderld: INTZ24 ==FHk==
DaelOrdered: Dae Ordertem|D: INT24 <<PKz:
DateFulfilled: Data Orderld: INTZ4 ==FH==
T=w=: Flod 1.% ternSequence: INT24
Subtota BeforeTax: Flod Tordered? | temMo: INTZ24 <<Flx=
ShipToContactD: INT24 <<FK== Murnber Ordered: [NT24
Bill ToContact[D: IMT24 <<Fhk=> LastUpdate: TimeStarmp
LastUpdate: TirmeStamp

e Ordered constrained placed on the relationship
e Additional column ItemSequence

Mapping Ordered Collections

e Read the datain the proper

e Don’t include the sequence numb
key

e \When to update sequence numbers aft
rearranging order items

e Update sequence numbers after deleting
order item

e Consider sequence gaps greater than one

Hibernate Mapping (in memory)

<set name="Orderitem"
table="Orderltem"
sort="natural">
<key column="Orderld"/>
<element column="ItemSequence" type="long"/>
</set>

<map name="holidays" sort="my.custom.HolidayComparator">
<key column="year_id"/>
<map-key column="hol_name" type="string"/>
<element column="hol_date" type="date"/>

</map>

Hibernate Mapping (in DB)

<set name="Orderltem" table=" Orderltem
I[temSequence asc">

<key column="COrderld"/>
<element column="ItemSequence" type="long"
</set>

<map name="holidays" order-by="hol_date, hol _name"
<key column="year_id"/>
<map-key column="hol _name" type="string"/>
<element column="hol_date type="date"/>
</map>

Mapping Recursive
Relationships

— TR [R

AT
i e LR
Pateni FeamPTHE W oo a0 oo
"] e L T O e R

'E

|
|
|
|
L ':'-.l.::"“ mansge |14 : z
= _ —
1 e [
|
|
|
|
[
|
|

TaamP{elc WI3d ~<Pss

1% ol b [

bt i | L1
Frrpdayee
Eryp a el U L'

Blaasger | mgsmp=sCvHlr W10 22 Fasa
Tasrriile I8 2 =Fkss L

Mapping Recursive
Relationships

e Also called reflexive relation

e Mapped the same way as many-t
relationships

— In the associate table both columns are
foreign keys into the same table

Mapping Class Scope

Properties
e Basically static variables
— Availableto all instances not just one

I
Ll Pk I Frisiialen P el 1l o Bdwdaib
I Cuwivarararbar
| - T B
Lt I Clgeei grame CaEsl v e

AL EARE P | I - -

nETE | Y -

B i gy Sy e

7 o arid s [T |— ————————————————
| Class'd i s] Chemss” pmmdard
I RariciH i . <L HAHLE < HR [E PR LTI P]

RN PR e | ol B DHULE] BT PR

I Wk WA R) g AR adf 1

Hibernate Lab 3

Hibernate Lab 3

e Implement Relations
— One-to-One
— One-to-Many
— Many-to-Many

Hibernate Query Language

Hibernate Query Language

Why to use HQL?

e Full support for relational operations:

— Hibernate Query Language uses Classes and
properties instead of tables and columns.

e Return result as Object:

of object(s), which is easy to use.
— This eleminates the need of creating the object and
populate the data from result set.

Why to use HQL?

e Polymorphic Queries:
— HQL fully supports polymorphic queries.
— Polymorphic queries gives the query results along
child objectsif any.
e EasytoLearn:
— Hibernate Queries are easy to learn and can be easily
implemented in applications.
e Support for Advance features:

— HQL contains many advanced features such as pagination, fet
join with dynamic profiling, Inner/outer/full joins, Cartesian
products.

— HQL also supports Projection, Aggregation (max, avg) and
grouping, Ordering, Sub queries and SQL function calls.

Why to use HQL?

e Database independent:

— Queries written in HQL are datab
Independent

Sample Test program

public class SelectHQLExample {
public static void main(String[] args)
Session session = null;
try{

// This step will read hibernate.cfg.xml an
hibernate for use

SessionFactory sessionFactory = new
Configuration() .configure() .-buildSessionFactory()?;

session =sessionFactory.openSession();
String SQL_QUERY =“Put your HQL query here";
Query query = session.createQuery(SQL_QUERY);
for(lterator it=query.iterate();it_hasNext();){

}
session.close();
}catch(Exception e){
System.out.printin(e.getMessage());
J}finally{
¥

}
H 1

From

e from Cat as cat

e cartesian product or "cross' join.

—from Fornmula as form Para
as param

Associations and joins

e The supported join types are Nrom
ANSI SQL

— inner join

— left outer join
— right outer join
— full join (not usualy useful) A left outer join returns all
the records from the | eft

table, or th ide of
from Cat as cat mg;gﬁmmse 5

join cat.mate as mate

left join cat.kittens as
kitten

The select clause

e The select clause picks whichNagjects and

properties to return in the query
—select cat.mate from Cat
—select cat.name from

DomesticCat cat where cat.na
like "fri%"

The select clause 2

e Queries may return multiple obj
properties as an array of type Object

—select new list(mother, offs
mate.name) from DomesticCat as
mother inner join mother.mate a
mate left outer join mother.kitt
as offspr

— select new Family(mother, mate,
offspr) from DomesticCat as mother
join mother.mate as mate left join
mother.kittens as offspr

Aggregate functions

e The supported aggregate function
- avg(...), sum(...), min(...), max(...)
— count(*)
— count(...), count(distinct ...), count(all...)

select avg(cat.weight),
sum(cat.weight), max(cat.weight)
count(cat)

from Cat cat

Aggregate functions 2

e select cat.weight +
sum(kitten.weight)
from Cat cat join cat.kitt
kitten group by cat.id,
cat.weight

e select fTirstName]|" "|]initial]
"| lupper(lastName) from Person

Polymorphic queries
e from Cat as cat

e All persistent Objects
— from java.lang.Object o

Where clause

e select foo from Foo foo, Bar here

foo.startDate = bar.date

e from bank.Person person where
person.id.country ='AU" and
person.id.medicareNumber = 123456

e from Cat cat where cat.class =
DomesticCat

Expressions

select cust

from Product prod, Store s
Iinner join store.customers

where prod.name = “widget*”

and store.location.name 1In (
"Melbourne®, "Sydney"®)

and prod = all
elements(cust.currentOrder.linel
ems)

Order By, Group By

e from DomesticCat cat order by car®
cat.weight desc, cat.birthdate

e select cat.color, sum(cat.weight), count(cat
Cat cat group by cat.color

e select cat.color, sum(cat.weight), count(cat) fro
Cat cat group by cat.color having cat.color in
(eg.Color.TABBY, eg.Color.BLACK)

Example

e Thefollowing query returnsthe o
of items and total value of the order
unpaid orders for a particular customer
mai‘lni mum total value, ordering the result
value.

e |n determining the prices, it uses the current
catalog.

e Theresulting SQL query, against the ORDER,
ORDER_LINE, PRODUCT, CATALOG and
PRICE tables has four inner joins and an
(uncorrelated) subselect.

Example

e select order.id, sum(price.amount), cou

e from Order as order join order.lineltems
item.product as product, Catalog as catalog |
catalog.prices as price

e where order.paid = false
and order.customer = :customer
and price.product = product
and catalog.effectiveDate < sysdate
and catal og.effectiveDate >= all (

select cat.effectiveDate

from Catalog as cat

where cat.effectiveDate < sysdate)
group by order
having sum(price.amount) > :minAmount
order by sum(price.amount) desc

Hibernate Lab 4

Hibernate Lab 4

e Generate Table
e Generate Pojo
e Generate Queries
— From
— Select
— Where
— Order by
— Group by

Performance Tuning

Performance Tuning

e Definitions

e Tuning Mappings
e Lazy Reads

e Caching

Definitions

e Database performancetuning:
focuses on changing the database sch
often by denormalizing portions of it.
techniques include changing the types of
columns, for example an index istypically
effective when it is based on numeric column
instead of character columns; reducing the
number of columns that make up a composite
key; or introducing indices on atable to support
common joins.

Definitions

e Data access performance tuning:
focuses on improving the way that d
accessed. Common techniques include
introduction of stored proceduresto “crun
data in the database server to reduce ther
transmitted across the network; reworking
queriesto reflect database features; clustering
data to reflect common access needs; and
caching data within your application to reduce
the number of accesses.

Tuning Mappings

e More than one way to map an 8jgject
— Four ways for inheritance
— Two ways for one-to-one relationship
— Four ways for class scope properties
e Play around to see what's best

e Note: Whenever you change a mapping
strategy you also have to change the objec
schema and/or the data schema

Lazy Reads

e Should attributes be automaticall in when
an object isretrieved?

e Some attributes are rather large and rar
accessed

e Lazy means:. Instead of loading the attribut
when the object isretrieved it isread when t
attribute is accessed

e Lazy Read is commonly used in searching and
(drill-down) reporting

Caching

e Use a connection Pool
e Statement Cache

— stores a partially compiled version of a
statement in order to increase performan

— Needs more memory

e Object or Result cache
— First, second level
— distributed

Caching 2

Sl SR
ﬂl.l

]
Amrientnn E Ciictin f—
I

| % ‘ ! -
Bings JVM . -

Cacha -1—

Sngie N Il?_ -

2 |
Appiizatan i Conche lfj—
T

Appiicaton

Hibatrrarie

Additional (Hibernate) Tips

e See
http://www.informit.com/articl
p?20=353736

— Use an SQL Monitor
— Optimize Collections

— Don't do bulk inserts
e If use optimized hibernate parameters

icle.as

Questions?

Thank you!!

