
Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 1

10/14/2005
1

Mapping Objects to Relational
Databases using Hibernate

German Eichberger

10/14/2005
2

About me
German Eichberger, M.S., is a senior software

engineer with UCSD’s fMRI Center, lecturer and
former program manager with UCSD extension,
an adjunct professor with Mesa College, and the
founder and CEO of e-nnovate Technologies Inc.
Prior to that he worked as a project manager and
technical architect for PricewaterhouseCoopers
designing and implementing e-commerce,
document management and CRM solutions. He
earned his degree in computer vision research
and vehicle tracking from the University of
Karlsruhe.

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 2

10/14/2005
3

Agenda
! Introduction
! Basic Mapping Concepts
! Hibernate Lab 1
! Mapping Inheritance Structures
! Hibernate Lab 2
! Lunch Break
! Mapping Object Relationships
! Hibernate Lab 3
! Performance Tuning
! Conclusion

10/14/2005
4

Introduction
! What is persistence?
! The paradigm mismatch
! Persistence Layers and alternatives
! What is ORM?
! The Role of the Agile DBA

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 3

10/14/2005
5

What is persistence?
From Wikipedia, the free encyclopedia:
Persistence is the term used in computer science to describe a capability used by a

computer programmer to store data structures in non-volatile storage such as a file
system or a relational database.

Without this capability data structures only exist in-memory, and will be lost when a
program exits. Persistence allows, for example, a program to be restarted and re-loaded
with the data structures from a previous invocation of the program.

Design patterns solving this problem are container based persistence, component based
persistence and the Data Access Object model.

Examples of persistence are using Java serialization to store Java objects on disk or using
J2EE to store Enterprise Java Beans in a relational database.

10/14/2005
6

Relational Databases
! present a view of data as a

collection of rows and
columns

! Codd’s 12 Rules
! Used almost everywhere
! Common denominator in

most corporations
! SQL
! Entity Relationship Diagram

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 4

10/14/2005
7

E-R Diagram

10/14/2005
8

SQL

! Create and Alter
! Select, Insert, Delete

! Joins and Cartesian Product
! Group, order
! A sound knowledge of SQL is mandatory for

sound Java database application

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 5

10/14/2005
9

SQL in Java, C/C++, …

! Usually language in language
! Special “connectors” to the database, e.g.

JDBC, ADO.NET, ODBC, …
! RDMS dominate the computing industry
! SQL is the language of choice

10/14/2005
10

Persistence in OOP

! Difference between persistent and transient
objects

! Business logic doesn’t interact with rows
and columns in DB

! Business logic interacts within object-
oriented domain model

! Therefore it is possible to use sophisticated
object-oriented objects

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 6

10/14/2005
11

The paradigm mismatch (1)

! Granularity
– OOP: coarse-grained and finer-grained classes, simple

datatypes (e.g. String)
– RDMBS: Tables and columns

! Inheritance and Polymorphism
! Identity

– OOP: a==b a.equals(b)
– RDBMS: primary keys are the same

10/14/2005
12

The paradigm mismatch (2)
! Associations

– OOP: Object references, one-to-many, many-to-many,…
– RDMBS: joins, link table, …

! Object graph navigation
– OOP: a.getB().getBValue()
– RDBMS: select Bvalue from a,b where a.b_id = b.id and a.id =

123
! The cost

– 30% of application code written deals with the mismatch

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 7

10/14/2005
13

Layered Architecture

Presentation Layer

Business Layer

Persistence Layer

Utility
and

Helper
Classes

10/14/2005
14

Implement a Persistence Layer

! Hand-Code with SQL/JDBC or similar
– Different SQL Dialects
– Lots of work
– Hard to test
– “Not invented here”

! Serialization
– Can only access all objects as once
– Not very good for concurrent enterprise applications

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 8

10/14/2005
15

Implement a Persistence Layer
! EJB 2.0 entity beans

– Bean Managed Persistence
– Container managed persitence
– Unpopular -- so being abandoned and replaced by JDO (EJB 3.0)
– Why EJB’s are bad

! Too coarse grained - 1:1 relationship with tables
! Too fine grained for reusability
! No polymorphic associations and queries
! Not portable between different application servers
! Not serializable
! Forces an unatural Java Style

10/14/2005
16

Implement a Persistence Layer
! Object Oriented Database Systems

– Not very popular
– But with JDO there might be a come-back
– According to vendors much faster than an RDBMS
– And who is still dealing with ISAM?

! Others
– XML persistence
– …

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 9

10/14/2005
17

What is ORM?

“The automated and transparent persistence
of objects to the tables in a relational
database, using metadata that describes
the mapping between the objects and the
database”

10/14/2005
18

Parts of an ORM solution

! An API for performing basic operations
! An API or language for queries
! A way to specify the mapping metadata
! Some tricks like

– Dirty checking
– Lazy association fetching
– Automatic optimization

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 10

10/14/2005
19

Ways to implement 1

! Pure relational
– The application is designed around tables
– Heavy use of “stored procedure”

! Light object mapping
– Classes are mapped manually to tables
– Design Patterns hide SQL from Objects

10/14/2005
20

Ways to implement 2

! Medium Object Mapping
– The Objects are the center
– SQL is generated at build time
– Objects are cached by the persistence layer

! Full object mapping
– Sophisticated object modeling
– Transparent persistency
– Efficient fetching and caching strategies

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 11

10/14/2005
21

Why ORM

! Productivity
! Maintainability
! Performance
! Vendor Independence

10/14/2005
22

Hibernate is an Open Source
ORM Technology
! Compatible with EJB 3.0
! Transparent Persistence
! Flexible Mapping
! Query Facilities
! Metadata Facilities
! Hibernate Multi-Layer Cache Architecture
! Performance
! Extension Points

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 12

10/14/2005
23

Architecture

10/14/2005
24

Architecture - Lite

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 13

10/14/2005
25

Architecture – Full Cream

10/14/2005
26

Basic Mapping Concepts

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 14

10/14/2005
27

Basic Mapping Concepts

! Introduction
! Mapping Terminology
! Shadow Information
! Mapping Meta data

10/14/2005
28

Introduction

! Start with the data attributes of a class
! An attribute will map to zero or more

columns in the database
! Not all attributes are persistent
! Some attributes are objects themselves

– Really reflects an association
– The object needs to be mapped as well

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 15

10/14/2005
29

Introduction 2
! Mapping is recursive and will end
! Easiest mapping is a one attribute to a single

column
! Usually classes don’t map to single tables

– But it’s a good start
– Performance tuning might motivate Refactoring

! In new projects the object schema should drive
the data model

10/14/2005
30

Mapping Terminology

Mapping (v): The act of determining how objects
and their relationships are persisted in permanent
data storage

Mapping (n): The definition of how an object’s
property or a relationship is persisted in
permanent storage

Property: A data attribute, either implemented as a
physical attribute such as the string firstname or
as a virtual attribute implemented via an
operation such as getTotal()

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 16

10/14/2005
31

Mapping Terminology

Property mapping: A mapping that describes how
to persist an object property.

Relationship mapping: A mapping that describes
how to persist a relationship (association,
aggregation, or composition) between two or
more objects.

10/14/2005
32

Shadow information

! Any data an object needs to maintain
above and beyond its normal domain data
to persist itself
– Primary key
– Concurrency control
– Boolean isPersistent()

! Common Style Convention in UML is to
not show shadow information

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 17

10/14/2005
33

Mapping Meta Data

! Mapping Table
! Use a picture like on the whiteboard
! Write it in Hibernate’s XML language
! Use EJB 3.0 Annotations

10/14/2005
34

Hibernate Lab 1

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 18

10/14/2005
35

Hibernate Lab 1

! Hello World
! Understanding the architecture
! Mapping a basic POJO

10/14/2005
36

Mapping Inheritance
Structures

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 19

10/14/2005
37

Mapping Inheritance Structure

! Introduction
! Map Hierarchy to a single table
! Map each concrete class to its own table
! Map each class to its own table
! Map classes to a generic table structure
! Mapping multiple inheritance

10/14/2005
38

Introduction

! RDMS do not natively support inheritance
! Inheritance results in some interesting

twists when saving objects

For simplicity the following examples are
not tuned.

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 20

10/14/2005
39

A simple hierarchy

Note: This is not the best modeling -- if somebody is a customer and
an employer things get confusing.

10/14/2005
40

Map Hierarchy to a single table

! One table holds all attributes from multiple hierarchies
! With more hierarchies things get messy
! Imagine: Executives who are customers…

! Refactor

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 21

10/14/2005
41

Hibernate Mapping
<class name=“Person" table=“Person">

<id name=“PersonPOID" type="long" column=“PersonPOID">
<generator class="native"/>

</id>
<discriminator column=“PERSON_TYPE" type="string"/>
<property name=“Name" column=“Name"/>
<subclass name=“Customer" discriminator-value=“CUSTOMER">

<property name=“Preferences" column=“Preferences"/>
</subclass>
<subclass name=“Employee" discriminator-value=“EMPLOYEE">

<property name=“Salary" column=“Salary"/>
<subclass name=“Executive" discriminator-value=“EXECUTIVE">

<property name=“Bonus" column=“Bonus"/>
</subclass>

</subclass>
</class>

10/14/2005
42

Hibernate Mapping
@Entity()
@Inheritance(

strategy=InheritanceType.SINGLE_TABLE,
discriminatorType=DiscriminatorType.STRING,
discriminatorValue=“Person"

)
@DiscriminatorColumn(name=" PERSON_TYPE ")
public class Person { ... }

@Entity()
@Inheritance(

discriminatorValue=“CUSTOMER"
)
public class Customer extends Person { ... }

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 22

10/14/2005
43

Each concrete class to own
table

! One table for each class including the
– Attributes implemented by the class
– Attributes inherited

10/14/2005
44

Hibernate – Mapping 1

<class name=“Customer" table=“Customer">
<id name=“CustomerPOID" type="long"
column=“CustomerPOID">

<generator class="native"/>
</id>

<property name=“Name" column=“Name"/>
<property name=“Preference"

column=“Preference"/>
</class>

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 23

10/14/2005
45

Hibernate – Mapping 2
<class name=“Person">

<id name=“POID" type="long" column=“POID">
<generator class=“native"/>

</id>
<property name=“Name" column=“Name"/>

<union-subclass name=“Customer" table=“Customer">
<property name=“Preference" column=“Preference"/>

</union-subclass>
<union-subclass name=“Employee" table=“Employee">

...
<union-subclass name=“Executive" table=“Executive">
...
</union-subclass>

</union-subclass>
</class>

10/14/2005
46

Hibernate – Mapping
@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public class Person implements Serializable {

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 24

10/14/2005
47

Each Class to own table

! Customer and Employer in two tables -> join
! Note: Lots of keys and relations
! Views
! Type column in person

10/14/2005
48

Hibernate Mapping
<class name=“Person" table=“Person">

<id name=“PersonPOID" type="long" column=“PersonPOID">
<generator class="native"/>

</id>
<property name=“Name" column=“Name"/>
<joined-subclass name=“Customer" table=“Customer">

<key column=“PersonPOID"/>
<property name=“Preference" column=“PREFERENCE"/>

</joined-subclass>
<joined-subclass name=“Employee" table=“Employee">

<key column=“PersonPOID"/>
…
<joined-subclass name=“Executive" table=“Executive">
<key column=“PersonPOID"/>
...

</joined-subclass>
</joined-subclass>
</class>

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 25

10/14/2005
49

Hibernate Mapping
@Entity()
@Inheritance(strategy=InheritanceType.JOINED)
public class Person implements Serializable { ... }

@Entity()
public class Customer extends Person { ... }

@Entity(access=AccessType.FIELD)
public class Employee extends Person { ... }

10/14/2005
50

Generic Table Structure

! Very flexible approach
! Used when end users can add their own attributes
! Slow

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 26

10/14/2005
51

Multiple inheritance

! Definition: A class inherits from two or
more superclasses

! A questionable feature of OO which rarely
make sense
– Not supported by Java

10/14/2005
52

Multiple Inheritance 2

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 27

10/14/2005
53

Conclusion

! None of these strategies are ideal for all solutions
! The easiest strategy

– One table per hierarchy
– Then refactor

! One table per concrete class is messy if you need
to refactor
– data migration nightmare

! Generic Schema is slow

10/14/2005
54

Hibernate Lab 2

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 28

10/14/2005
55

Hibernate Lab 2

! Hibernate generates schema
! Mapping class inheritance

– Table per concrete class
– Table per class hierarchy
– Table per subclass

! Simple Query

10/14/2005
56

Mapping Object Relationships

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 29

10/14/2005
57

Mapping Object Relationships

! Types of Relationships
! How Object Relationships are implemented
! How Relational Database Relationships are

implemented
! Relationship Mapping
! Mapping Ordered Collections
! Mapping Recursive Relationships
! Mapping Class Scope Properties

10/14/2005
58

Example

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 30

10/14/2005
59

Types of Relationships

! First category based on multiplicity
– One-to-one relationship
– One-to-many
– Many-to-many relationship

! Directionality
– Uni-directional

! Not supported by RDBMS, hence all relationships
are bi-directional

– Bi-directional

10/14/2005
60

How Object Relationships are
implemented
! Combination of reference and operations

– Multiplicity one: Reference and getter/setter
– Multiplicity is many: collection Attribute

! Array, List, HashMap, etc.

– Uni-directional only implemented in one class
– Bi-directional implemented in two classes

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 31

10/14/2005
61

How Relational Database
Relationships are Implemented
! Relationships are maintained through the

use of foreign keys
! One-to-one and One-to-many just have the

foreign key as column in the other table
! Many-to-Many

– Either multiple foreign key columns
– Special Many-to-Many table

10/14/2005
62

Tips on keys

! Use single column keys
! Let the database generate the keys for you

– Hibernate has its own generators but also can
use the ones provided by the DB

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 32

10/14/2005
63

Relationship Mappings

! Keep the multiplicities the same
– You could map a one-to-one relationship as a

many-to-many. Why?
! When reading one object Hibernate can

automatically read all the other objects
defined in the relation into memory

10/14/2005
64

One-To-One Mappings
! Let’s work through the logic of retrieving a single

Position object one step at a time:
1. The Position object is read into memory.
2. The holds relationship is automatically traversed.
3. The value held by the Position.EmployeePOID column is used

to identify the single employee that needs to be read into
memory.

4. The Employee table is searched for a record with that value of
EmployeePOID.

5. The Employee object (if any) is read in and instantiated.
6. The value of the Employee.position attribute is set to reference

the Position object.

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 33

10/14/2005
65

One-To-One Mappings 2
! Now let’s work through the logic of retrieving a

single Employee object one step at a time:
1. The Employee object is read into memory.
2. The holds relationship is automatically traversed.
3. The value held by the Employee.EmployeePOID

column is used to identify the single position that
needs to be read into memory.

4. The Position table is searched for a row with that
value of EmployeePOID.

5. The Position object is read in and instantiated.
6. The value of the Employee.position attribute is set to

reference the Position object.

10/14/2005
66

One-To-One Mappings 3

! Let’s assume we save an object
– Create a Transaction to maintain referential

integrity
– Add update statements for each object
– Each update statement contains both business

attributes and key values mapped
– Because of the foreign keys being inserted

the relationship is persisted

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 34

10/14/2005
67

One-To-One Mapping 4

! Look at Employer-Position
– Foreign key is implemented in position
– But in the object schema it is in employer
– It works both ways

! But a future requirement might be that an
employer can have multiple positions

– Requires the judgment call from a good
Mapping Specialist…

10/14/2005
68

Hibernate Mapping
The foreign key with a unique constraint, from Employee to

Position, may be expressed as:

<many-to-one name=“Position" class=“Position"
column=“PositionPOID" unique="true"/>

And this association may be made bidirectional by adding
the following to the Employee mapping:

<one-to-one name="employee" class="Employee" property-
ref=“position"/>

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 35

10/14/2005
69

Hibernate Mapping
@Entity
public class Employee {

@Id
public Long getId() { return id; }

@OneToOne(cascade = CascadeType.ALL)
@PrimaryKeyJoinColumn
public Position getPosition() {

return position;
}
...

}

10/14/2005
70

One-to-Many Mappings

! Look at Employee and Division
– Automatically traversed from employee to

division
– And in Hibernate vice versa
– Also cascading updates and deletes

! Performance?

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 36

10/14/2005
71

One-to-Many Mappings 2

! Employee read into memory traverses the
relationship

! But you don’t want to have several copies
of the same division

! Hibernate needs to keep track of that
– Caching

! Adding an employee to a division is just
divsision.addEmployee(employee)

10/14/2005
72

One-to-Many Mappings 3

! Saving works the same way as in One-To-One

! Note: Every example uses a generic key as
foreign key but you could also use an attribute
which is unique, e.g. the social security number
– I prefer generic keys though

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 37

10/14/2005
73

Hibernate Mapping
<many-to-one name=“employee" class=“Division"

column=“Division_POID"/>

Reverse
<bag

name=“employees”
<key column=“Division_POID”/>
<one-to-many class=“Employee”/>
</bag>

10/14/2005
74

Hibernate Mapping
@Entity()
public class Employee implements Serializable {

@ManyToOne(cascade =
{CascadeType.CREATE,
CascadeType.MERGE})
@JoinColumn(name=“DivisionPOID")
public getDivision() {

return division;
}
...

}

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 38

10/14/2005
75

Many-to-Many Mappings

! Associative Table, a data entity whose
sole purpose is to maintain the relationship
between two or more tables in the database

! Look at Employee and Task
– Additional Table
– Usually contains the keys

! Notice that the multiplicity still works out

10/14/2005
76

Many-to-Many Mappings 2
! Assume we need to retrieve all tasks for an

employee object in memory
1. Create a SQL Select statement that joins the EmployeeTask and

Task tables together, choosing all EmployeeTask records with
the an EmployeePOID value the same as the employee we are
putting the task list together.

2. The Select statement is run against the database.
3. The data records representing these tasks are marshaled into

Task objects. Part of this effort includes checking to see if the
Task object is already in memory. If it is then we may choose
to refresh the object with the new data values (this is a
concurrency issue).

4. The Employee.addTask() operation is invoked for each Task
object to build the collection up.

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 39

10/14/2005
77

Many-to-Many Mappings 3
! Assume we need to save the relationship

1. Start a transaction.
2. Add Update statements for any task objects that have changed.
3. Add Insert statements for the Task table for any new tasks that you

have created.
4. Add Insert statements for the EmployeeTask table for the new tasks.
5. Add Delete statements for the Task table any tasks that have been

deleted. This may not be necessary if the individual object deletions
have already occurred.

6. Add Delete statements for the EmployeeTask table for any tasks that
have been deleted, a step that may not be needed if the individual
deletions have already occurred.

7. Add Delete statements for the EmployeeTask table for any tasks that
are no longer assigned to the employee.

8. Run the transaction.

10/14/2005
78

Many-to-Many Mappings 4
! Many-To-Many Realtionships map two

business classes to three tables

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 40

10/14/2005
79

Hibernate Mapping
<bag

name=“tasks”
table=“EMPLOYEE_TASKS” >
<key column=“Employee_POID”/>
<many-to-many

class=“Task”
column=“Task_POID”

/>
</bag>

10/14/2005
80

Hibernate Mapping
@Entity
public class Employer implements Serializable {

@ManyToMany(
targetEntity=org.hibernate.test.metadata.manytomany.Employee.class,
cascade={CascadeType.CREATE, CascadeType.MERGE}

)
@JoinTable(

table=@Table(name="EMPLOYER_TASKS"),
joinColumns={@JoinColumn(name=“Employee_POID")},
inverseJoinColumns={@JoinColumn(name=“Task_POID")}

)
public Collection getTasks() {

return tasks;
}
...

}

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 41

10/14/2005
81

Mapping Ordered Collections

! Ordered constrained placed on the relationship
! Additional column ItemSequence

10/14/2005
82

Mapping Ordered Collections

! Read the data in the proper sequence
! Don’t include the sequence number in the

key
! When to update sequence numbers after

rearranging order items
! Update sequence numbers after deleting an

order item
! Consider sequence gaps greater than one

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 42

10/14/2005
83

Hibernate Mapping (in memory)
<set name=“OrderItem"

table=“OrderItem"
sort="natural">

<key column=“OrderId"/>
<element column=“ItemSequence" type=“long"/>

</set>

<map name="holidays" sort="my.custom.HolidayComparator">
<key column="year_id"/>
<map-key column="hol_name" type="string"/>
<element column="hol_date" type="date"/>

</map>

10/14/2005
84

Hibernate Mapping (in DB)
<set name=“OrderItem" table=“OrderItem" order-by="

ItemSequence asc">
<key column=“OrderId"/>
<element column=“ItemSequence" type=“long"/>

</set>

<map name="holidays" order-by="hol_date, hol_name">
<key column="year_id"/>
<map-key column="hol_name" type="string"/>
<element column="hol_date type="date"/>

</map>

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 43

10/14/2005
85

Mapping Recursive
Relationships
! Also called reflexive relationship

10/14/2005
86

Mapping Recursive
Relationships
! Also called reflexive relationship
! Mapped the same way as many-to-many

relationships
– In the associate table both columns are

foreign keys into the same table

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 44

10/14/2005
87

Mapping Class Scope
Properties
! Basically static variables

– Available to all instances not just one

10/14/2005
88

Hibernate Lab 3

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 45

10/14/2005
89

Hibernate Lab 3

! Implement Relations
– One-to-One
– One-to-Many
– Many-to-Many

10/14/2005
90

Hibernate Query Language

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 46

10/14/2005
91

Hibernate Query Language

10/14/2005
92

Why to use HQL?

! Full support for relational operations:
– HQL allows representing SQL queries in the form of

objects.
– Hibernate Query Language uses Classes and

properties instead of tables and columns.
! Return result as Object:

– The HQL queries return the query result(s) in the form
of object(s), which is easy to use.

– This eleminates the need of creating the object and
populate the data from result set.

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 47

10/14/2005
93

Why to use HQL?
! Polymorphic Queries:

– HQL fully supports polymorphic queries.
– Polymorphic queries gives the query results along with all the

child objects if any.
! Easy to Learn:

– Hibernate Queries are easy to learn and can be easily
implemented in applications.

! Support for Advance features:
– HQL contains many advanced features such as pagination, fetch

join with dynamic profiling, Inner/outer/full joins, Cartesian
products.

– HQL also supports Projection, Aggregation (max, avg) and
grouping, Ordering, Sub queries and SQL function calls.

10/14/2005
94

Why to use HQL?

! Database independent:
– Queries written in HQL are database

independent

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 48

10/14/2005
95

Sample Test program
public class SelectHQLExample {

public static void main(String[] args) {
Session session = null;
try{

// This step will read hibernate.cfg.xml and prepare
hibernate for use
SessionFactory sessionFactory = new

Configuration().configure().buildSessionFactory();
session =sessionFactory.openSession();

String SQL_QUERY =“Put your HQL query here";
Query query = session.createQuery(SQL_QUERY);
for(Iterator it=query.iterate();it.hasNext();){

…
}

session.close();
}catch(Exception e){

System.out.println(e.getMessage());
}finally{

}
}

}

10/14/2005
96

From

! from Cat as cat

! cartesian product or "cross" join.
– from Formula as form, Parameter
as param

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 49

10/14/2005
97

Associations and joins
! The supported join types are borrowed from

ANSI SQL
– inner join
– left outer join
– right outer join
– full join (not usually useful)

from Cat as cat
join cat.mate as mate
left join cat.kittens as

kitten

A left outer join returns all
the records from the left
table, or the one side of a
relationship.

10/14/2005
98

The select clause

! The select clause picks which objects and
properties to return in the query result set.
– select cat.mate from Cat cat
– select cat.name from
DomesticCat cat where cat.name
like 'fri%'

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 50

10/14/2005
99

The select clause 2
! Queries may return multiple objects and/or

properties as an array of type Object[],
– select new list(mother, offspr,
mate.name) from DomesticCat as
mother inner join mother.mate as
mate left outer join mother.kittens
as offspr

– select new Family(mother, mate,
offspr) from DomesticCat as mother
join mother.mate as mate left join
mother.kittens as offspr

10/14/2005
100

Aggregate functions
! The supported aggregate functions are

– avg(...), sum(...), min(...), max(...)
– count(*)
– count(...), count(distinct ...), count(all...)

select avg(cat.weight),
sum(cat.weight), max(cat.weight),
count(cat)

from Cat cat

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 51

10/14/2005
101

Aggregate functions 2
! select cat.weight +
sum(kitten.weight)
from Cat cat join cat.kittens
kitten group by cat.id,
cat.weight

! select firstName||' '||initial||'
'||upper(lastName) from Person

10/14/2005
102

Polymorphic queries

! from Cat as cat

! All persistent Objects
– from java.lang.Object o

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 52

10/14/2005
103

Where clause

! select foo from Foo foo, Bar bar where
foo.startDate = bar.date

! from bank.Person person where
person.id.country = 'AU' and
person.id.medicareNumber = 123456

! from Cat cat where cat.class =
DomesticCat

10/14/2005
104

Expressions
select cust
from Product prod, Store store
inner join store.customers cust

where prod.name = 'widget'
and store.location.name in (
'Melbourne', 'Sydney')
and prod = all
elements(cust.currentOrder.lineIt
ems)

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 53

10/14/2005
105

Order By, Group By

! from DomesticCat cat order by cat.name asc,
cat.weight desc, cat.birthdate

! select cat.color, sum(cat.weight), count(cat) from
Cat cat group by cat.color

! select cat.color, sum(cat.weight), count(cat) from
Cat cat group by cat.color having cat.color in
(eg.Color.TABBY, eg.Color.BLACK)

10/14/2005
106

Example
! The following query returns the order id, number

of items and total value of the order for all
unpaid orders for a particular customer and given
minimum total value, ordering the results by total
value.

! In determining the prices, it uses the current
catalog.

! The resulting SQL query, against the ORDER,
ORDER_LINE, PRODUCT, CATALOG and
PRICE tables has four inner joins and an
(uncorrelated) subselect.

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 54

10/14/2005
107

Example
! select order.id, sum(price.amount), count(item)
! from Order as order join order.lineItems as item join

item.product as product, Catalog as catalog join
catalog.prices as price

! where order.paid = false
and order.customer = :customer
and price.product = product
and catalog.effectiveDate < sysdate
and catalog.effectiveDate >= all (

select cat.effectiveDate
from Catalog as cat
where cat.effectiveDate < sysdate)

group by order
having sum(price.amount) > :minAmount
order by sum(price.amount) desc

10/14/2005
108

Hibernate Lab 4

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 55

10/14/2005
109

Hibernate Lab 4

! Generate Table
! Generate Pojo
! Generate Queries

– From
– Select
– Where
– Order by
– Group by

10/14/2005
110

Performance Tuning

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 56

10/14/2005
111

Performance Tuning

! Definitions
! Tuning Mappings
! Lazy Reads
! Caching

10/14/2005
112

Definitions

! Database performance tuning: This effort
focuses on changing the database schema itself,
often by denormalizing portions of it. Other
techniques include changing the types of key
columns, for example an index is typically more
effective when it is based on numeric columns
instead of character columns; reducing the
number of columns that make up a composite
key; or introducing indices on a table to support
common joins.

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 57

10/14/2005
113

Definitions

! Data access performance tuning. This effort
focuses on improving the way that data is
accessed. Common techniques include the
introduction of stored procedures to “crunch”
data in the database server to reduce the result set
transmitted across the network; reworking SQL
queries to reflect database features; clustering
data to reflect common access needs; and
caching data within your application to reduce
the number of accesses.

10/14/2005
114

Tuning Mappings

! More than one way to map an object
– Four ways for inheritance
– Two ways for one-to-one relationships
– Four ways for class scope properties

! Play around to see what’s best
! Note: Whenever you change a mapping

strategy you also have to change the object
schema and/or the data schema

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 58

10/14/2005
115

Lazy Reads
! Should attributes be automatically read in when

an object is retrieved?
! Some attributes are rather large and rarely

accessed
! Lazy means: Instead of loading the attribute

when the object is retrieved it is read when the
attribute is accessed

! Lazy Read is commonly used in searching and
(drill-down) reporting

10/14/2005
116

Caching

! Use a connection Pool
! Statement Cache

– stores a partially compiled version of a
statement in order to increase performance

– Needs more memory
! Object or Result cache

– First, second level
– distributed

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 59

10/14/2005
117

Caching 2

10/14/2005
118

Additional (Hibernate) Tips

! See
http://www.informit.com/articles/article.as
p?p=353736
– Use an SQL Monitor
– Optimize Collections
– Don’t do bulk inserts

! If use optimized hibernate parameters

Fundamentals of TCP/IP and the Internet

Fundamentals of TCP/IP and the Internet 60

10/14/2005
119

Questions?

10/14/2005
120

Thank you!!

